

August 1986 Revised March 2000

DM74LS240 • DM74LS241 Octal 3-STATE Buffer/Line Driver/Line Receiver

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to $133\Omega.$

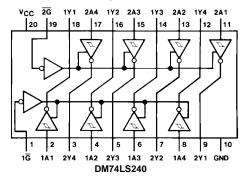
Features

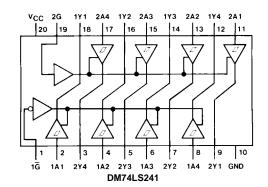
- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins
- Typical I_{OL} (sink current)
 - 24 mA
- Typical I_{OH} (source current)
 - -15 mA
- Typical propagation delay times

Inverting 10.5 ns

Noninverting 12 ns

- Typical enable/disable time 18 ns
- Typical power dissipation (enabled)


Inverting 130 mW Noninverting 135 mW


Ordering Code:

Order Number	Package Number	Package Description		
DM74LS240WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74LS240SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
DM74LS240N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		
DM74LS241WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74LS241N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagrams

Function Tables

DM74LS240

Inp	Output		
G	Α	Y	
L	L	Н	
L	Н	L	
Н	X	Z	

DM74LS241

	Inp	Outputs			
G	G	1A	2A	1Y	2Y
Х	L	L	Х	L	
Х	L	Н	Х	Н	
Х	Н	X	X	Z	
Н	X	X	L		L
Н	Х	X	Н		Н
L	Х	Х	Х		Z

- L = LOW Logic Level H = HIGH Logic Level X = Either LOW or HIGH Logic Level Z = High Impedance

Absolute Maximum Ratings(Note 1)

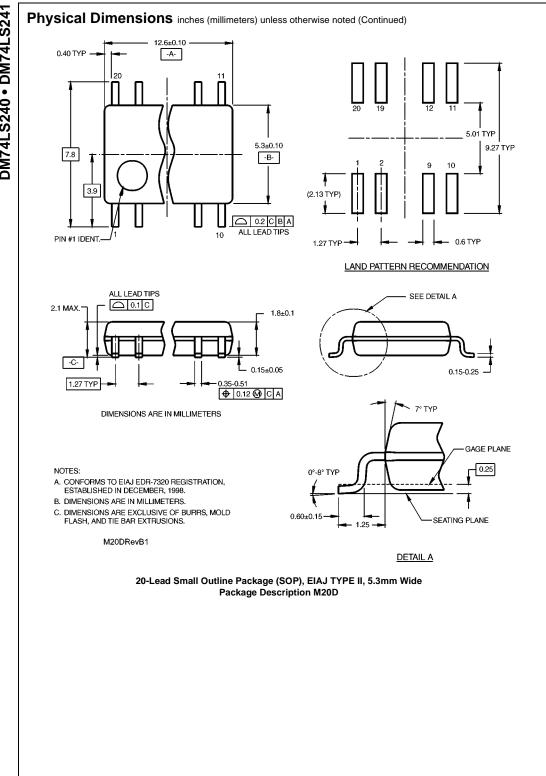
Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

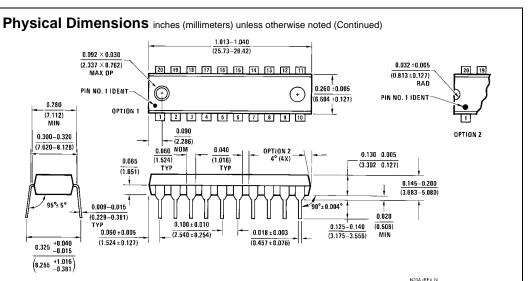
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Electrical Characteristics


over recommended operating free air temperature range (unless otherwise noted)


Note 2: All typicals are at $V_{CC}=5V,\,T_A=25^{\circ}C.$


Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at V $_{CC}$ = 5V and T_A = 25°C

Symbol	Parameter		Conditions	Max	Units	
t _{PLH}	Propagation Delay Time	C _L = 45 pF	DM74LS240	14		
	LOW-to-HIGH Level Output	$R_L=667\Omega$	DM74LS241	18	ns	
t _{PHL}	Propagation Delay Time	C _L = 45 pF	DM74LS240	18		
	HIGH-to-LOW Level Output	$R_L = 667\Omega$	DM74LS241	18	ns	
t _{PZL}	Output Enable Time	C _L = 45 pF	DM74LS240	30		
	to LOW Level	$R_L = 667\Omega$	DM74LS241	30	ns	
t _{PZH}	Output Enable Time	C _L = 45 pF	DM74LS240	23	ns	
	to HIGH Level	$R_L=667\Omega$	DM74LS241	23		
t _{PLZ}	Output Disable Time	C _L = 5 pF	DM74LS240	25	ns	
	from LOW Level	$R_L = 667\Omega$	DM74LS241	25		
t _{PHZ}	Output Disable Time	C _L = 5 pF	DM74LS240	18	ns	
	from HIGH Level	$R_L = 667\Omega$	DM74LS241	18		
t _{PLH}	Propagation Delay Time	C _L = 150 pF	DM74LS240	18		
	LOW-to-HIGH Level Output	$R_L = 667\Omega$	DM74LS241	21	ns	
t _{PHL}	Propagation Delay Time	C _L = 150 pF	DM74LS240	22		
	HIGH-to-LOW Level Output	$R_L = 667\Omega$	DM74LS241	22	ns	
t _{PZL}	Output Enable Time	C _L = 150 pF	DM74LS240	33	ns	
	to LOW Level	$R_L = 667\Omega$	DM74LS241	33		
t _{PZH}	Output Enable Time	C _L = 150 pF	DM74LS240	26		
	to HIGH Level	$R_L = 667\Omega$	DM74LS241	26	ns	

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com